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1 Introduction

We, humans, experience a never satisfied hunger to
knowledge and insight about the world around us. We
try to model the world, save data in databases and dis-
cover interesting information and patterns about the
data. In a data set, a lot of patterns are hidden. But
not all of them are equally interesting or useful. A first
obstacle is the usually huge amount of time it takes
to generate all the patterns. But if that succeeds, the
second obstacle involves the programmer, who can-
not possibly process hundreds, thousands or millions
of patterns in order to understand them or distillate
information out of them to take action. Therefore,
a screening needs to take place. But how? You can
raise the bar of interestingness, with the risk of just
revealing common knowledge. And next to that, “in-
terestingness” in itself is difficult to define. One can
use constraints to define this. Or you might condense
the representation, such that less patterns actually
represent more information about the data. Instead
of looking at the interestingness of each pattern indi-
vidually, one might aim at returning the most inter-
esting set of patterns. These do not necessarily con-
sist of the individually best patterns, for one pattern
may cover (almost) all the information that another
pattern covers as well, making it (almost) redundant.
This is called pattern set mining.

In this essay, we will discuss a myriad of approaches
to pattern (set) mining. How can we efficiently return
the set of patterns that is most useful to the user?

2 Introduction on FPM

Before we can move on to the big problems and solu-
tions, we will first give an introduction on important
concepts.

To explain the concepts necessary for understand-
ing thoroughly, we will use a metaphor of a super-
market throughout this section. Suppose you work
for a supermarket chain, and your boss would like to
gain more insight in the purchases of its clients, for
example what combinations of products often occur
(Kale and smoked sausages? Apples and pears? Face
masks and antibacterial soap?). He keeps record of ev-
ery transaction (purchase). You start to wonder that
the patterns your boss is looking for might have some
similarities with rules: if . . . [a customer bought face
masks], then . . . [he likely also bought antibacterial
soap]. Your first idea, just simply listing all possible

combinations and calculating how often each pattern
occurs, is quickly put aside: the number of patterns
is way too large to compute in reasonable time. Next
to that, how would you pick out a valuable pattern to
return to your boss? There are way too many! This
is known as pattern explosion. How should you deal
with this?

First, we formalise as following. A transaction
database D is a set of transactions, where a transac-
tion is a subset of all items I for sale. Note, the trans-
action only shows whether or not a certain product is
bought, not how many copies. An itemset I is a set
of items I ⊆ I, and transaction t contains itemset I if
I ⊆ t. Suppose, we would like to know often itemsets
appear in transactions. We define this number as the
support of an itemset, and we call it a frequent or large
itemset if the itemset satisfies our frequency demand
minSup (minimal support), or a small itemset other-
wise. An association rule is an implication of the form
X ⇒ Y , with disjoint itemsets X (antecedent) and Y
(consequent). This rule has confidence c if c% of the
transactions that contain X also contain Y . The sup-
port s of a rule is the percentage of transactions in D
that contain X ∩ Y .

Now, we might be able to define more formally what
the boss wants you to achieve. First, it would be
interesting to know which items are frequently bought
together. We can phrase this as:

1. Generate all itemsets with support above thresh-
old minSup. This is called frequent itemset
mining.

What we also mentioned, was the discovery of rules.
Can we find such patterns in the transaction database
of the supermarket? We define this as:

2. For a given large itemset Y with k items, generate
all rules that use the items in Y . We will look
for rules where the antecedent has k − 1 items.
The consequent exactly has one: the one item in
Y that is not in the antecedent of the rule.

These goals were formulated before in paper [1].
Now, a light bulb lights above your head. If very

little people ever buy apples, we know for sure that
the combination of apples and pears will not occur
often, not more often than the support of apples or the
support of pears. This is called the A Priori property,
formally expressed as

X ⊆ Y ⇒ suppD(X) ≥ suppD(Y )

Here, suppD(X) is the support of itemset X in
database D.

1



Pattern Set Mining 2020

2.1 AIS algorithm

In paper [1], an algorithm, from now on called the AIS
algorithm, has been introduced to tackle this prob-
lem, using the A Priori property. AIS makes multi-
ple passes over the databases, while candidate item-
sets (expected large itemsets) are generated. For each
transaction encountered, one checks if this transaction
contains large itemsets, determined in the previous
pass. These large itemsets are extended with (large)
items from the transaction, and then added to the set
of candidate itemsets. Note, small items don’t need
to be added, given the A Priori property. Still, (too)
many candidate itemsets are generated.

2.2 Apriori algorithm

Paper [2] introduces a faster algorithm (for large scale
problems) for finding association rules between items
in a database, called Apriori, with fewer redundant
generated candidates. First, the large itemsets Lk−1
of size k−1 found in pass k−1 are used to generate the
candidate itemsets Ck. In contrast with the previous
article, not all 1-extensions are generated. Instead, a
self-join rule is used, where the itemsets A and B are
merged if first k − 2 items are identical, after which
item k−1 of A and item k−1 of B are concatenated.
To avoid duplicates, item k − 1 of A should be lexi-
cographical smaller than item k − 1 of B. Then, one
deletes all generated itemsets that have small k − 1-
subsets, i.e. subsets that are not in Ck−1. Note, still
some small itemsets will be generated. Both AIS and
Apriori algorithms focus on the sub-problem 1, and
direct for sub-problem 2 to other papers.

2.3 Frequent Episode Mining

Pattern set mining can be applied to many differ-
ent fields (so not only supermarket transaction, even
though it appears that way sometimes), of which an
example is researched in paper [3].

The authors look at event sequences, which are se-
quences of events, within a time frame. An interesting
episode is a series of events that happens within a time
window. First they compute all frequent episodes,
which are episodes with a minimal occurrence in a
time window. Then, they compute all the rules us-
ing that set, where an episode rule is an implication
β ⇒ γ, where β and γ are episodes where β is a sub-
episode of γ. Doesn’t this sound familiar?

This shows that pattern set mining can be used in
broad area by adapting the techniques accordingly.

3 Constraints

In this section, we will dive into the world of con-
straints. By formulating what patterns you would
want, you can limit the number of patterns returned.

3.1 FP-growth algorithm

In this section, the FP-growth [4] algorithm to mine
the complete set of frequent patterns will be ex-
plained. The improvements of FP-growth over Apri-
ori include no need for generating candidate itemsets
and no need for multiple scans over the database to
check the support of each itemset.

First, we discuss the proposed storage structure.
Each transaction is represented by the set of frequent
itemsets included, which is ordered on decreasing sup-
port. The concise representation as frequent pattern
(FP) tree is based on the fact that transactions will
often share the prefix. Itemsets that occur most fre-
quently will appear at the beginning of the prefixes of
many transactions, and thus they will have a shared
prefix.

Second, we will explain how the frequent patterns
are obtained. The search through the tree is very
elegant and fast, by node-links that can identify an
associated frequent itemset quickly. It applies a pat-
tern growth method, such that you can concatenate
frequent 1-itemsets, without generating useless candi-
date sets.

3.2 Push constraints into FP-growth

Because of runtime issues, it would be better to apply
constraints directly instead of using a filter after hav-
ing computed all patterns. This is is called constraint
pushing. In [5], they propose a method to push anti-
monotone constraints into the FP-growth algorithm.

Constraints are anti-monotone if and only if when-
ever an itemset S violates the constraints, so does
any superset of S. A well-known example is the con-
straint being frequent: If an itemset is not frequent,
nor will any of its supersets! This saves a lot of work in
searching. The beauty of the proposal in this article,
is that more constraints (convertible anti-monotone
constraints) can be converted to a anti-monotone con-
straint using a specific order on the items. Con-
sider a harder constraint than frequency, such as the
avg(S) ≤ v, where each item in S is labeled with a
value. If the items are sorted in decreasing order, the
average of an itemset is not more than of its prefix (try
to think of a counter-example; there is none). These
ideas can be readily incorporated into FP-growth, the
previously explained algorithm, where experimental
results showed the effectiveness of the algorithm de-
veloped.

3.3 ExAnte

In contrast with the previous article, the ExAnte al-
gorithm tackles the problem of dealing with monotone
constraints.

If a monotone constraint holds for itemset X, then
it holds for any superset of X. For a long time, this
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seemed to be harder to deal with than anti-monotone
constraints, since you need to look until the last su-
perset of a superset to establish whether or not the
constraints holds, even if you encounter itemsets for
which is does not hold. But, in [6], a preprocessing
algorithm is introduced that can be coupled with any
constraint pattern mining algorithm. The constraints
prune the search space and the input database, while
containing the exact support of each solution itemset.
Two reductions are used. The α−reduction prunes
the items in X that do not satisfy the frequency con-
straint, and removes them from the corresponding
transactions. Then, there are more opportunities for
µ−reduction, which prunes the transactions that do
not satisfy the given monotone constraint. By remov-
ing those transactions, some items may have become
infrequent, which induces more opportunities for an
α−reduction. The α−reduction and µ−reduction are
called alternatively until neither of them can be ap-
plied anymore; then they are passed on a main algo-
rithm.

It has been theoretically proven that it is always
profitable to start any constrained pattern computa-
tion with the ExAnte algorithm, which is a pretty cool
result.

3.4 Pushing constraints?

The previous section already showed a way to avoid
filtering, without pushing constraints. [7] argues that
pushing constraints should not be used at all, for it
would be outdated. Instead, the authors propose, why
not produce all the patterns? This is a costly process,
they also admit, but it only needs to happen once.
After that, the user can do query mining on this ini-
tial result set. In other words, use the data with the
weakest constraints for exploration. But, we need to
keep in mind, even if producing all the patterns once
will only take time once, the problem of the space it
takes is not taken into account.

To conclude the short review on (pushing) con-
straints, not much is written about it currently in the
academic site. Let’s move on to the next approach.

4 Condensed representation

For your quest, a colleague tipped you to look at con-
densed representations. What if you could think of
ways to subset the set of all frequent itemsets in such
a way that all the information is there?We will take a
look at closed itemsets and non-derivable itemsets in
the following two sections.

4.1 Closed itemsets

In [8], Pasquier et al. introduce a new algorithm Close
for mining association rules in very large databases,
based on the pruning of the closed itemset lattice.

A itemset S is closed if there exists no superset that
has the same support as S. For example, if item A
always co-occurs with item B, then A and B are not
closed, since the itemset AB has the same support. In
the paper, the authors constructed a wonderful proof
that stated that the set of maximal frequent itemsets
M is identical to the set of maximal closed itemsets
MC. This is awesome! If we want to find the set of
all frequent itemsets, we only have to look at the set
of all closed itemsets. Note, from the set of maximal
frequent itemsets, the set of all frequent itemsets can
be easily derived by taking all the subsets of the found
itemsets.

Close works as following. First, the set of frequent
closed itemsets is obtained. This can be done in the
same sort of level search as Apriori. This is the case,
since all sub-closed itemsets (closed subsets) of a fre-
quent closed itemset are frequent. Next to that, all
sup-closed itemsets (closed supersets) of an infrequent
closed itemset are infrequent. Finally, the support of
an itemset I is equal to the support of the smallest
closed itemset containing I. This allows us to use the
same threshold minSup in the set of closed itemsets
as we would in the complete data set.

Second, we can construct the complete set of fre-
quent itemsets, and derive their supports. Then, the
generation of association rules can be done efficiently
in a straightforward manner.

4.2 Non-derivable itemsets

The main goal of paper [9] is to present several meth-
ods to identify redundancies in the set of all frequent
itemsets and to exploit these redundancies, resulting
in a condensed representation of all frequent item-
sets and significant performance improvements of a
mining operation. The authors give several deduction
rules to deduce the lower bound and upper bound of
the support for the itemsets. The bounds they give
are proven to be non-redundant, which means that
any omission of a rule would give a less tight inter-
val. Moreover, the rules are complete, which means
that the derived bounds are always tight. This results
in the set of non-derivable itemsets (NDI), which is
the set of itemsets whose supports cannot be derived.
They prove that the set of frequent NDIs allows to
compute the support of all other frequent itemsets,
so NDIs can be used as a condensed representation.
A nice property of NDIs is that their size is bounded
by the logarithm of the database size, which means
that the compression is high. The authors provide an
efficient algorithm to derive all frequent itemsets.

5 Redefine interestingness

Still, many patterns are returned with a condensed
representation. Moreover, would your boss be able to
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interpret the information hidden, or would we need
to reconstruct everything before we can make use of
it? Making sense of the database would then again re-
quire work and time. We go further. Remember, your
boss is looking for interesting patterns in the data.
But what is “interesting? In the following sections we
redefine this notion and explore the possibilities.

5.1 Miki

In the end, a set of patterns is returned. This set
might contain individually very interesting patterns,
but the quality of patterns should also be considered
in the context of the other patterns found. In pa-
per [10], the authors introduce a new framework for
mining binary data. Items are selected by their dis-
tinctive power, relative to other items. The quality
of itemsets is measured by the use of joint entropy.
Joint entropy is a measure for the amount of informa-
tion conveyed by an itemset. Assume a itemset with
just one item a. If item a is in (almost) all transac-
tions in the database, item a is not very informative:
the chance that this item is in a transaction is very
high. Then the joint entropy will be low. What if
a almost never occurs in the database? Then again
the joint entropy is low. But, the joint entropy of an
itemset is high if a occurs in half of the transactions,
but in the other half it doesn’t: then it can be of dis-
tinguishable value in a database! An itemset of size
k that induces the highest joint entropy compared to
all other itemsets of size k is called a maximally in-
formative k-itemset (miki). Miki’s can be used as a
means of filtering results obtained by rule discovery.
In the next section, different intuitions and according
measures are discussed as filtering methods.

5.2 Pattern teams

In [11], the authors propose filtering the returned set
of patterns based on a number of quality measures.
The small subset that optimizes such a measure is
called a pattern team.

What quality measures should be used? A myriad
of intuitions is used. An example is (approximate)
mutual exclusivity, which means the patterns should
not describe the same subset of items. Moreover, no
patterns should cover (approximately) the same set
of examples. Also, no patterns should cover (approxi-
mately) the complement of another pattern. Did you
note something odd? The first and the last intuition
are actually competing to some extent! Therefore,
the user is usually only interested in one or a few in-
tuitions. Several measures are compared, including
the previously introduced joint entropy and exclusive
coverage, where patterns sets that reduce the amount
overlap between patterns are favored. What measure
is best for what application, is dependent on the con-
text, aim and underlying intuitions.

5.3 Chosen few

In [12], the author propose a general heuristic ap-
proach for selecting a small subset of patterns, a sim-
ilar goal as the previous section. That set of patterns
should be small enough to be easily processed, and it
should show little redundancy while retaining as much
information as possible encoded in the full pattern set.
In machine learning algorithms, a subset S∗ ⊂ S that
induces the same partition for the complete set S will
be of the same usefulness, is the intuition. The advan-
tage is that a human can then far more easily process
the small subset (with size around 30). The idea of
the algorithm is as following. Given a set of patterns,
one can (binary) point out which transactions contain
a pattern, and which don’t. In this way, a pattern
partitions the transactions. From the two subgroups,
the next patterns can again split up the subgroups in
more subgroups. Note that not each pattern will split
up each subgroup in two. If there is no change, then
the pattern is rejected and not included in the subset.
The ordering of the processing of the patterns works
best by support descending or length ascending.

This technique is a post-processing step, used to
reduce the number of patterns without losing infor-
mation with respect to the partitioning power.

5.4 Tiling

Tiling databases [13] is a new way of looking at char-
acterizing and mining a database, just like frequency
or constraints rules. While there are too many fre-
quent itemsets returned as results, there are less re-
sults for tiles.

A tile consists of a block of ones in a 0/1 database.
Frequent itemsets do not necessarily tell you some-
thing about the database. Using area of ones as mea-
sure, you balance the number of items (not too low)
and the number of transactions (not too low). A
(large) tile contains information about the database.
If you only know there are n possible items and m
rows, there are 2nm possibilities to fill the database.
A tiling implicitly determines an upper bound on the
number of different databases that are consistent. A
complete tiling covers exactly the database, and it can
be seen as a form of a (condensed) representation.

Several quests in the context of tiling can be formed,
for example the maximum k-tiling problem, which
asks for a tiling consisting of at most k tiles that have
the largest possible area, or the minimum tiling prob-
lem which asks for a tiling with minimum number of
tiles that covers all ones in the database.

In [13], the authors proof the minimum k−tiling
and maximum k-tiling problem are NP-hard. They
provide a greedy approximation algorithm for
k−tiling that ensures an approximation within a con-
stant factor of the optimal solution, which is really
nice.
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5.5 Using sampling

In the next few sections, we will move on to a differ-
ent way to determine the interestingness of a set of
patterns, namely using statistics.

Instead of exhaustively search the pattern space
(and filter it), algorithms exist that are based on
Markov Chain Monte Carlo methods (MCMC). A
downside of this is the so called “burn in period”, that
usually, MCMC needs to run for a long time before
it approximates the real distribution accurately. In
paper [14], the proposed procedures produce exactly
k patterns proportional to either frequency, squared
frequency, area or discriminativity. We will shortly
discuss the frequency-based sampling. First, select
a transaction proportional to the size of its power-
set. Then return a uniformly sampled subset of that
transaction. The intuition is that a random transac-
tion is likely to contain a pattern that is supported
by many transactions. Using the size of the powerset
makes sure that the sampling is not biased towards
small transactions.

We summarize [15] that introduces the so called
FastEst algorithm that estimates the number of pat-
terns for a given threshold minSup. Consider a tree
T rooted at ∅, where each node is a frequent item-
set. The children of a node X are all of its frequent
expansions X ∪ u, with u some item not in X. The
leaves correspond to the maximal frequent itemsets
we came across before. The tree does not need to be
materialized; instead paths will be sampled from it. A
sampled path is constructed by “walking” through the
tree until it hits a maximal frequent itemset. Then it
will return the sequence of encountered out-degrees.
The average of the sampled paths is the final estimate.
Moreover, the pattern frequency spectrum gives an es-
timate for the total number of patterns for all possible
frequency thresholds. It can be obtained by a number
of estimates for random values of thresholds using the
FastEst algorithm, and then fit a nonlinear regression
line through these.

5.6 Self-sufficient itemsets

Instead of searching for interesting association rules,
paper [16] looks for interesting itemsets. If two prod-
ucts co-occur more often than expected, than two
rules will be found, both hand gel → face masks and
face masks → hand gel. Then, the essential discov-
ery is {face masks, hand gel}, the authors argue. In
the paper, interestingness of itemsets is defined as
self-sufficiency. Itemsets are self-sufficient if their fre-
quency is greater than can be accounted for by either
the frequency of their subsets or of their supersets
alone. But when is that?

We define an itemset productive if the frequency
of the itemset is greater than that which would be
expected from any partition of the items into two in-

dependent itemsets. Suppose item a, b and c are inde-
pendent. Then, supp({a, b}) = supp({a})supp({b}),
so supp({a, b, c})= supp({a, b}supp({c}). Hence,
{a, b, c} is not productive. We need to add another
criterion, namely the itemset should not be redun-
dant. The transactions that contain the item mother
will all also contain the item female. We know fe-
male is a generalization of mother. An itemset S is
redundant if there is a proper subset R of S that has
identical support to one R′s subsets.

The last extra requirement we set is that an itemset
S should also be productive to its exclusive domain.
Its exclusive domain is the set of transactions that is
not covered by any productive non-redundant super-
set of S. Then we would find that superset (instead
of S) more interesting. The supposed interestingness
of the subsets would then be caused or explained by
its superset.

A note of caution, this is not a condensed represen-
tation, since it does not contain enough information
to derive the support of all frequent itemsets.

5.7 Statistical significance testing

In paper [17], the authors propose a very general ap-
proach to find the smallest set of patterns that cap-
tures what is statistically significant about the data,
in terms of a global p value. The proposed frame-
work is shown to be applicable in a large area, includ-
ing time series segmentation, clustering and frequent
itemset mining.

Given a null model, a set of predefined patterns,
and a test statistics, the goal is to identify the small-
est set of patterns that, when imposed as constraints
to the null model, leads to the data no longer being
significant. Each time a pattern is added as a con-
straint, the space of possible binary databases shrinks
(remember, we have seen this concept before in sec-
tion 5.4), so then the constraints contain more infor-
mation. The null hypothesis is defined by a probabil-
ity function over the sample space, a “neutral” null
reference.

First they show that the problem of finding a set of
size K that maximizes the p-value is of serious com-
plexity. It is NP-complete, and no algorithm can ap-
proximate it by a finite ratio. Anything else than
exhaustive search may be arbitrarily far from the op-
timum. Next, they provide a greedy algorithm for
the problem, with a practically small (20) number of
returned itemsets in experiments.

5.8 Statistical Modelling

In the previous section, a given null model was used as
a reference model against which the interestingness or
unexpectedness of patterns was contrasted. But what
could we use as a null model? The following two pa-
pers integrate prior knowledge to serve as model. The
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challenge here is to formalize this prior information in
a way that it can be used to define subjective inter-
estingness in a meaningful and practical way.

The prior information is considered as constraints
on the probabilistic null model, the maximum entropy
[18] principle is used for this. The problem is finding
a probability distribution that satisfies a set of lin-
ear constraints implied by prior information. These
will not be sufficient to uniquely determine a distri-
bution. Therefore, a common strategy is to search
for the distribution with the largest entropy subject
to these constraints, called the MaxEnt distribution.
The MaxEnt distribution makes the fewest assump-
tions about the true distribution of the data, and is
therefore the safest bet to represent the prior knowl-
edge. Besides that, it is relatively easy to compute
the MaxEnt model.

Subjective interestingness of a pattern can be quan-
tified by contrasting it with the prior information in
the form of a MaxEnt distribution. You would want
to compute some measure of unexpectedness of the
pattern. An example is self-information, which re-
lies on the probability of a pattern under MaxEnt
model. The smaller this probability, the more sur-
prising the pattern (you can take for example the
− log of the probability). Self-information does not
take the complexity of the communication of a pat-
tern into account. Therefore, also the information
compression ratio could be used as measure, which
represents how much information is compressed in a
pattern. Or, the p-value, as has been introduced in
the previous section, with the MaxEnt distribution as
reference model.

Much research tries to objective interestingness.
This is odd, since an ‘interesting’ projection is not
easily universally agreed on. Paper [19] explores the
problem where the user is interested in exploring with-
out a clear anticipation of what to expect or what to
do with the patterns found. Can we develop a math-
ematical method to rate the patterns based on some
user criteria, so that the patterns that should be inter-
esting for the user will be more likely to be returned?

A user cannot define all prior believes at once. In-
stead, the user can incrementally update its prior be-
liefs. The goal should be to pick those patterns that
will result in the best updates of the user’s belief state,
with a small descriptional complexity.

5.9 Krimp

The main reasons for mining a data set, is to gain
insight. Therefore, the goal of paper [20] is to find
the set of patterns that describes the data the best.
To make this precise, the Minimal Description Length
(MDL) principle is used. The MDL principle provides
a way to balance the complexities of the compressed

database and the encoding. If the encoding is too
simple, the database it hardly compressed, but if the
encoding is too complex, this is also not desirable.
The best model is H ∈ H minimizes L(H) +L(D|H),
where L(H) the length of the description of H is,
and L(D|H) the description of the data when encoded
with H. How does the MDL principle work for item-
sets? The idea is to use a code table, which is a two-
column table with itemsets and their corresponding
code. Transactions can be covered by a disjoint set
of itemsets from the code table, so a transaction can
be encoded by the codes of its cover. They are cov-
ered according to the Standard Cover Order, first by
decreasing itemset size, second by decreasing support
and third lexicographically.

If the codes are chosen wisely, the database can be
compressed much. usageD(X|CT ) denotes the usage
of itemset X in D given CT . We consider relative
usages:

PD(X | CT ) =
usageD(X | CT )∑

Y ∈CT usageD(Y | CT )
(1)

The intuition that we should use shorter codes the
more an itemset is used, expresses that the length of
X is − log(PD(X|CT )). From now on, we assume all
code tables are code-optimal.

Also the choice of the itemsets for in the code table,
the coding set, is important. The problem can be de-
fined as to find the smallest coding set CS such that
the total compressed size of the database L(D, CT )
with the corresponding code table CT is minimal.
The proposed Krimp algorithm works as following.

First, you start with standard code table ST con-
taining only singleton itemsets. How to find the opti-
mal? Trying all options is simply not viable. There-
fore, the algorithm makes use of a heuristic.

Add the candidate itemset one by one, by the Stan-
dard Candidate Order. This is an order first decreas-
ing on support, second descending on the size of the
itemset, and third lexicographically. The transactions
are covered using the Standard Cover order. A can-
didate itemset is kept only if the encoding results in
a smaller compressed size.

In addition, pruning can be used. When a candi-
date code table is accepted, we consider all its valid
subsets for pruning. Only a few candidate subsets are
accepted, so not the whole pruning search space needs
to be considered. Also, only the itemsets that have
an increased usage are considered for removal.

Krimp was tested as classifier to value the inter-
estingness of the found set, which gave good results.
Also the reduction on the number of returned sets
were very promising.

The advantages of the approach include that
Krimp is lossless, shows to be noise resistant and does
not need user-defined parameters.
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Second part
“All human knowledge is uncertain, inexact and par-
tial,” Bertrand Russell once said. When we try to
make sense of the world around us, uncertainty is part
of that process. In general, the data in databases is
assumed to be certain. This might be realistic for
the modelling in supermarkets (an item is there or
not). But, sometimes this is not the case. In some
databases, noisy data is present, such as the data col-
lected by satellite images. Next to that, uncertainty
can be used to protect the privacy of users, when ar-
tificial noise is added. It is then more challenging to
find patterns. Moreover, transactions can be aggre-
gated per customer. Probabilities express the esti-
mated likelihood that a customer purchases an item.
Then patterns can be mined across customers instead
of transactions.

In the previous part, we discussed the problem of
(deterministic) pattern set mining and discussed so-
lutions proposed over the years. In this part, we
will introduce the problem of probabilistic pattern set
mining, and discuss some approaches to this problem.
Probabilistic or not, we still aim to gain insight in the
data.

First, we will discuss how to mine probabilistic fre-
quent itemsets using the methods of [21]. Then, we
shortly address the problem of finding probabilistic
association rules following the idea of [22]. Finally,
we explore characterizing uncertain databases using
compressing, according to the approach of [23].

Definitions

Uncertainty in a database can be expressed in a
myriad of different ways. In section 6 and 8, we look at
databases where a probability is attached to whether
an item i is present in transaction j. However, the
article in section 7 assumed an existential probability
for each transaction, which specifies the chance that
the transaction exists. Note that the probabilities
are all assumed to be independent. These approaches
are different (one cannot express one in terms of the
other). Next to these, another type of uncertainty is
attribute-level uncertainty. Instead of an item being
present (1) or absent (0), each attribute can have n
different values, but we are not sure which one. We
will not address attribute-level uncertainty further.

All articles adopt the widely used possible world
semantics. Conceptually, an uncertain database can
be viewed as a set of possible deterministic instances
(called possible worlds). Reality is one of the possible
worlds, but our observations of it contain uncertainty
reflected by the probabilities in probabilistic database
P . There exist 2n×m possible worlds in a database
with n transactions and m items.

6 Probabilistic Frequent Itemset Mining

A frequent itemset has a support higher than a thresh-
old minSup. However, in probabilistic databases the
support of an itemset is uncertain. Therefore we de-
fine the frequentness probability, that is the probabil-
ity that an itemset is frequent. A probabilistic fre-
quent itemset (p-FI in short) is an itemset with a
frequentness probability of at least τ .

Some discussed previous work has been based on
the expected support of an itemset. The expected
support E[suppP(X)] of an itemset X in probabilistic
database P is the sum of existential probabilities of
X, defined as

E[suppP(X) =
∑
t∈P

P (X ⊆ t) (2)

Here, P (X ⊆ t) is the existential probability that
transaction t contains itemset X.

The problem with this is that two itemsets with
the same expected support can have very different fre-
quentness probabilities. Let t1 =

{
{A, 0.5}; {B, 1.0}

}
and t2 = {A, 0.5}. Suppose minSup = 1. The ex-
pected support of both item A and B is 1. But the
frequentness probability of A is 0.75, while the fre-
quentness probability of B is 1. We can be certain
that B is frequent, in contrast to A. Frequentness
probability can differentiate between those two.

The authors propose an algorithm to find all item-
sets that are frequent with a frequentness probability
of at least τ . To do this, they first present a method
for computing the frequentness probability in O(|T |)
time, with |T | the number of transactions. They pro-
pose an algorithm based on Apriori, and an additional
algorithm that outputs the uncertain itemsets in order
of decreasing frequentness probability.

We first need to calculate support probability dis-
tribution called the probabilistic support (note, this is
not the expected support). Pi(X) denotes the proba-
bility that itemset X has support i. The naive imple-
mentation would materialize all possible worlds and
count their support. But this takes too long, and is
not necessary. It can also be computed directly, as
proposed by the authors. The frequentness probabil-
ity of X can be expressed as P≥minSup(X). Neverthe-
less, the complexity of computing this is still exponen-
tial w.r.t. the number of transaction |T |, so we will
not go into this basic algorithm in detail. Because,
the authors propose to use dynamic programming to
reduce this to linear time.

Dynamic programming splits up the problem in
sub-problems, solves them in a smart order and com-
bines it efficiently. Let P≥i,j(X) denote the probabil-
ity that at least i of j transactions contain itemset X,
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which is

P≥i,j(X) =∑
S⊆Tj :S≥i

(∏
t∈S

P (X ⊆ t) ·
∏

t∈Tj−S

(
1− P (X ⊆ t)

))
(3)

The summation is over all subsets S of Tj with size
larger than i, where Tj is the set of the first j
transactions. The product is taken over all trans-
actions t in S. Because all the probabilities are as-
sumed to be independent, we multiply the probability
P (X ⊆ t), that X is contained in transaction t (this is
in the data), with the complement of that probability
1 − P (X ⊆ t). Note, P≥i,|T |(X) denotes the proba-
bility that X is contained in at least i transactions of
the entire database.

Dynamic programming can make use of recursion,
splitting up the problem, as we mentioned before. We
construct a matrix with the support on the y-axis,
and the number of transactions on the x-axis. Each
cell (i, j) represents the value of P≥i,j . The recursive
formula is given by

P≥i,j(X) =

P≥i−1,j−1(X) · P (X ⊆ tj) +

P≥i,j−1(X) · P (1− P (X ⊆ tj)) (4)

Here, P≥0,j = 1 ∀.0 ≤ j ≤ |T |, because it is certain
that an itemsets is contained at least 0 transactions.
We also know that P≥i,j(X) = 0 ∀.i ≤ j, because in
the first j transactions, X can be contained in at most
j transactions. A visualization of the matrix can be
seen in figure 1.

Figure 1: [21] A visualization of the DP matrix

Here can be seen that once the cell to left[
P≥i,j−1(X)

]
and the cell to the lower left[

P≥i−1,j−1(X)
]

is known, then P≥i,j(X) can be com-
puted. The authors proof that the running time is
O(|T |) and the required space can also be reduced to
O(|T |).

Filter strategies

In addition, filter strategies can be used. We can
use the monotonicity lemma that P≥i,j ≥ P≥i+1,j+1.

In the best case, the added transaction j + 1 will
certainly contain the corresponding itemset, which
makes P≥i,j = P≥i+1,j+1. In all other cases, the
probability will be less. Therefore, we can prune X
if any of the probabilities PminSup−k,|T |−k(X), with
1 ≤ k ≤ |T | is lower than the user specified threshold
τ .

Next to that, 0-1 optimization can be used. If
P (X ⊆ tj) = 0, transaction tj can be ignored. If
a transaction tj contains X with probability 1, tj can
be omitted if we decrease minSup by 1. This speeds
up the computation if the database contains certain
items (0/1).

Algorithms

The first proposed algorithm is based on the
Apriori algorithm. Frequentness probability is
anti-monotone, which means that all subsets of a p-FI
are also p-FIs. This can be used to adjust the Apriori
algorithm as following. Each iteration is performed in
two steps: a join step for generating new candidates
and a pruning step with calculating the frequentness
probabilities and extracting the p-FIs from the can-
didates.

The second proposed algorithm is called incremen-
tal probabilistic FIM algorithm. The handy aspect
of this algorithm is that the parameter τ is not nec-
essary any more, since the algorithm returns the re-
sults in order of decreasing frequentness probability.
The itemsets can be returned one by one (incremen-
tal ranking queries), or be used to find the k item-
sets that have the highest frequentness probability
(top-k p-FIs query). The algorithm works as follow-
ing. First, all the items are added to the Active Item-
set Queue (AIQ) in decreasing order of frequentness
probability. The first itemset X of the AIQ (the most
probable) is taken out and outputted. Then, the
1-extensions of X are considered, and added to the
AIQ with their respective frequentness probabilities.
All of X’s supersets cannot have a higher frequent-
ness probability, due the anti-monotonistic property.
Continuing to retrieve the next first itemset from the
AIQ can be done until k is reached or all itemsets are
returned.

In conclusion, in [21], a method is proposed to find
itemsets in an uncertain transaction database that
are likely to be frequent. Using dynamic program-
ming techniques, the frequentness probability can be
computed in linear time. Moreover, filtering tech-
niques were used to speed up the computation. Then,
an implementation based on Apriori was discussed,
and an iterative itemset mining framework was intro-
duced which outputted the most likely frequent item-
sets first.
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7 Probabilistic association rules

In [22], the authors study the discovery of frequent
patterns and association rules from probabilistic data
under the possible world semantics. The authors as-
sume that each transaction has an existence probabil-
ity. As has been said before, this is different from the
previous article, and one cannot be trivially converted
into the other. The article first discusses an algorithm
to mine frequent patterns (itemsets), but we will not
go into this. At this point, we are more interested in
their ideas to mine probabilistic association rules.

A deterministic association rule has been defined
in the previous part. An association rule is an im-
plication in the form X ⇒ Y , which has a support
supp(XY) and a confidence c. X ⇒ Y is a probabilis-
tic association rule (p-AR in short) if

P (X ⇒ Y ) ≥ minProb (5)

So the probability X ⇒ Y should be larger than a
threshold minProb. This probability is given by

P (X ⇒ Y ) =

P
[
supp(XY) ≥ minSup∧conf(X ⇒ Y ) ≥ minConf

]
(6)

Given a minSup, minConf, minProb and the set of
probabilistic frequent patterns, the problem can be
defined to find all p-AR and their probabilities. A
naive way of solving this, would be to materialize all
possible worlds, determine the association rules per
world, and compute the probability of each rule over
all the worlds. This is of course not viable.

Before we can move on, we need to be able to
compute the probability of a p-AR efficiently. Let
fX denote the support probability distribution of X,
which denotes the probability that X has support i
for 0 ≤ i ≤ |T |. Given that X and XY are proba-
bilistic frequent itemsets, and given fX and fXY , we
can efficiently evaluate P (X ⇒ Y ).

First, find fXY . Because supp(X) = supp(XY ) +
supp(XY ), fX is the convolution of fXY and fXY .
The other way around, fXY is the deconvolution of
fX and fXY . We can use some math magic called the
Fast Fourier method (we will not go into detail here),
and implement the computation of the probability of
a p-AR in O(n log n). For the details, we direct you
to [21].

At this point, we can use the anti-monotonicity
trick again. Let X be a p-FI, and X ′ and X ′′ non-
empty itemsets, with X ′′ ⊂ X ′ ⊂ X. Then, if
X −X ′ ⇒ X ′ is a p-AR, then also is X −X ′′ ⇒ X ′′.

The anti-monotonicity trick is married with Apri-
ori, so we adopt that framework. Let X be a p-FI,
and Xi a sub-pattern of X of size i. We check whether
X −X1 ⇒ X1 is a p-AR for all X1s. If it is not, we
can stop examining all rules with a superset of X1

as the consequent. Otherwise, we check the validity
of X − X2 ⇒ X2 for all supersets X2. We continue
this checking until a rule is encountered that is not a
p-AR, or until Xi = X.

On our way

The last two sections both showed nice results. How-
ever, some of the problems of the first part of the es-
say are again prevalent here, for example the pattern
explosion, the questioned definition of “interesting”,
and the overlap and redundancy in the set of item-
sets returned. If all probabilistic frequent itemsets or
all probabilistic association rules are returned, will we
gain any knowledge or insight in the database, other
than that there exist many? Also, because the algo-
rithm is based on Apriori, it suffers from some of the
same caveats, such as generating useless candidates.

To continue our quest, we will go and discuss the
next article.

8 Characterizing using Compression

Now, we have come to the moment supreme (maybe
dependent on what you were hoping for in the first
place, but still), where we look at the value or in-
terestingness of the whole set returned. In contrast,
the previous two articles looked at all interesting (fre-
quent) patterns and all probabilistic association rules.
In [23], the authors study the problem of discovering
characterizing patterns in uncertain data through in-
formation theoretic lenses. Using the possible worlds
semantics and the MDL principle (remember from
section 5.9 in the previous part?), the aim is to dis-
cover patterns that compress well in expectation.

In this setting, a probabilistic transactional
database P attaches a probability pij to indicate the
probability that item i is present in transaction j. Re-
ality is one of the possible worlds, but our observations
of it contain uncertainty reflected by the probabilities
in probabilistic database P. The frequency of a pat-
tern X is defined as the expected support over all the
possible worlds. This is different from the approach
in [21] as explained in section 6. Then, we wanted
to know how often the support exceeded a threshold
minSup to be frequent. Here, we would like to find
patterns that compress well in expectation.

Recall the minimum description length (MDL) that
can be used to find code tables on deterministic data.
We would like to find the best model H ∈ H for
database D, that minimizes L(H) + L(D|H), where
L(H) is the length of the description of H, and
L(D|H) the length of the description of the data in D
when encoded with H. In the context of probabilistic
databases, we need to reformulate the problem to find-
ing the code table CT with minimum expected coding
length.
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Analogous to the deterministic case, we construct
the probability distribution on itemsets in the code
table by normalizing, here using expected usages:

PP(X | CT ) =
E[usageD(X | CT )]∑

Y ∈CT E[usageD(Y | CT )]
(7)

The optimal code length can defined as
L(codeCT (X)) = − log(PP (X | CT )). Itemsets
that are expected to be used often are assigned short
codes. From now on, if we talk about a code table,
we assume that we use these optimal code lengths.

The aim is to find the code table CT that tries to
minimize E[L(D,CT )] = E[L(D|CT )] + L(CT ). As
always, the naive approach would be to enumerate all
possible worlds of P, but we will put this approach
quickly aside again.

Exact computation

For databases with a small number of items, we can
compute E[L(D|CT )] exact by materializing a sort of
“expected database”, we will call this method MED
(Materialize Expectation in Data). Minimizing the
expected coding length of D is equivalent to finding
the optimal code table on the deterministic matrix
M(P), if we keep track of the weights of its rows that
are their expected counts E[countD(t)]. We can com-
pute the expected count E[countD(t)] of a transaction
t without summing over all possible worlds. Using
E[countD(t)], we can compute the E(L(D|CT )] and
the expected usages directly on the matrix M(P). For
the details of the proof, we direct you to [23].

So, we materialize all possible transactions and
compute the expected count in P for every such vec-
tor, and can then apply it to the standard Krimp
algorithm. We can materialize the matrix M(P) in
O(2m+1n) time, with m the number of items and n
the number of transactions. It is clear this quickly
becomes infeasible as m grows. Therefore, we then
will resort to the next approach: sampling.

Sampling

For larger databases, we approximate E[L(D|CT )] by
sampling. A basic sampling approach would be sam-
ple k possible worlds from P according to their exis-
tential probabilities, and then concatenate them into
one database Dk. Too simple? Maybe not. The au-
thors provide a proof on the bounds of the estimation,
which we will shortly discuss here.

First, observe that the sample mean based estima-
tor for E[L(D|CT )] is defined as

Ê[L(D|CT )] =
1

k

k∑
i=1

L(Di|CT ) (8)

This formula doesn’t need scare you too much, since
it is just the average over the k sampled worlds. Since

L(D|CT ) =
∑
t∈D L(t|CT ), we can rewrite it as

Ê[L(D|CT )] =
1

k

∑
t∈Dk

L(t|CT ) (9)

This sums all the code lengths of the transactions
in Dk and averages over the k possible worlds. If
these code lengths L(t|CT ) would be accurate, we
would obtain an accurate estimate of E[L(D|CT )].
L(t|CT ) is the sum of the code lengths of the codes
that belong to the cover of transaction t, denoted by
cover(CT, t). So, the problem has shifted to deter-
mining (approximately) accurate code lengths. Re-
call that L(codeCT (X)) = − log(PP (X)), and that
PP (X) and thus the code lengths are dependent on
the expected usage of X and the expected usages of
all other itemsets in CT .

Just for presentation, let µX and µ̂X denote
E[usageD(X|CT )] and Ê[usageD(X|CT )]. Γ and
Γ̂ denote respectively the sums

∑
Y ∈CT µY and∑

Y ∈CT µ̂Y . We can rewrite equation 7 as

PP(X) =
µX
Γ

(10)

We consider sample mean based estimators and let

µ̂X =
∑
t∈Dk

I{X ∈ cover(CT, t)}
k

(11)

Γ̂ =
∑
Y ∈CT

∑
t∈Dk

I{Y ∈ cover(CT, t)}
k

(12)

Again, no need to be scared of these formulas! µ̂X is
the expected usage of X, and the formula above just
counts how often X used in the cover of any of the
transaction of k. I is the indicator function, which is
1 if X is in the cover, and 0 otherwise. Because we
sample k times, the sum is divided by k. Γ̂ sums over
all itemsets Y in CT to add up µ̂Y .

Okay, this is the moment we will do some math
magic again, which means formally that we use Ho-
effding’s inequality bound. Using this, we can bound
the difference between the real mean and the sampled
mean. We have

Pr(|µX − µ̂X | ≥ εn) ≤ 2e−2nkε
2

(13)

and
Pr(|Γ− Γ̂| ≥ ΓSε) ≤ 2e−2nkε

2

(14)

for a small ε, with k the number of samples, n the
number of transactions, and S the maximum number
of items in a sampled transaction.

Wow, this is awesome! This means we can say some-
thing about the performance of our sampling method.
And not just something. The main result is that for
itemsets X with a reasonably high expected usage
(µX ≥ n/c), the estimator PP(X) is concentrated
around its expectation with high probability.
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Algorithms

The first algorithm MED is only viable for small
databases, as already had been explained. After
constructing the deterministic matrix M(P), the ex-
pected optimal code table can be easily approximated
by applying Krimp. This method is the most accu-
rate, since the only approximation is caused by the
heuristics of Krimp. The downside is that it has
the largest memory requirements, and is infeasible for
large m.

The second algorithm is called “Sample, Merge and
Mine” (SMM), based on the sampling approach ex-
plained before. After sampling k worlds and merging
then, Krimp can be applied. The found compressed
size needs to be adjusted by a factor 1

k to account for
the k samples.

The third algorithm is called is called “Sample &
Mine Until Convergence”(SMUC). It is parameter free
and does not need to maintain all sampled worlds.
This last method is the least accurate of the three,
but requires also the least memory. It starts with an
empty code table, and continues sampling till the code
table no longer changes. It works as follows.

SMUC first computes the expected standard code
table, which contains all singleton items. Then, a
world is sampled and frequent itemsets are mined
from this world (note, these are deterministic). The
found frequent itemsets are added one by one using
the standard candidate order of Krimp. If the com-
pression is improved, the new CT table is adopted.
This repeats until the CT table does not change any-
more and is converged.

The previously seen worlds do not need to be saved
explicitly. Instead, the usages aggregated over all pre-
viously seen worlds are maintained in U , for each
itemset in CT separately. For each sampled world
D, for each itemset X in CT , U is updated U [X] =
U [X] + usageD(X). Now, the lossless compression
over all worlds can be ensured, by defining

L(CT,U,D) = L(CT ) +
L(U | CT ) + L(D | CT )

k
(15)

In addition, pruning can be used. If we want to test
if removing an itemset would improve the expected
coding length, we would want to compute a new cover
of the data over all sampled worlds. But we do not
maintain them, so that is not possible. The solution
is simple: we remove itemset X and cover X using
the current CT as many times as its previous usage,
and adjust the usages of other itemsets accordingly.
The pruning is accepted if it improves the expected
coding length. Post-accepted pruning considers all
itemsets for removal one by one, and can be used for
both MED, SMM and SMUC. Pre-accepted pruning

considers all supersets of a candidate itemset for re-
moval, for these (more specific) supersets may be in
the way of (better) generic candidates. Pre-accepted
pruning is only used with SMUC, since it would not
make a difference in MED and SMM because of the
standard candidate order.

The methods are tested on two synthetic databases.
Because they were small, MED could be tested and be
used as “gold standard” for SMM and SMUC. SMM
approximates the gold standard MED very well, and
SMUC only slightly worse. When pruning is used, all
methods improve their performance, and then achieve
better compression ratio’s.

Furthermore, the methods were tested on two real
databases. For SMM, neither code table size nor com-
pression ratio stabilizes. SMUC converges nicely, but
the achieved compression ratio is not as good. Re-
member, the absolute compression ratios are not that
interesting since the goal is not to compress, but com-
pression is a means to select patterns. The interest-
ingness of the returned patterns of the real databases
is judged by domain experts. For the biological real
database, it is said “For a biologist, these are typi-
cal, not surprising but still meaningful patterns”. We
are not entirely sure how to interpret this, for “not
surprising, but still meaningfull” appears to be con-
tradicting.

Still, the results are promising and thoroughly sup-
ported by theory and experiments. This is an ap-
proach that values the interestingness of the returned
set of patterns, and defines interestingness of a pat-
tern by the containment of much information in a
compressed representation. The proposed methods
show to have theoretical bounds on the quality and
also the experiments have good results.

8.1 Some last words

We have seen several approaches to pattern (set) min-
ing in uncertain databases. In section 6, we discussed
the problem of mining all probabilistic frequent item-
sets. In section 7, we considered a method to obtain
probabilistic association rules. In section 8, we exam-
ined the problem of discovering characteristic patterns
that compress well in expectation.

Since we are practising science, there are still a
lot of problems unsolved. What is “interesting” is
always a difficult question. We could think of situ-
ations were the probabilities in itself might provide
patterns and contain interesting information, and not
only “the higher, the better”. Unexpected might be
a key word, new information hidden in the data that
you did not know before. Could we make a model with
prior knowledge on a probabilistic database, as has
been proposed for deterministic databases in section
5.8? Or should we try to find the most representative
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frequent patterns? Or could we try. . . ? There are a
myriad of unexplored possibilities, and there always
will be. This has been made clear by the development
and adjustment of techniques over the years, as has
been presented in the first part of this essay, and by
the adaptation of techniques applied in other contexts
and fields, as has been presented in the second part
of this essay.

It is difficult. . . , no, even impossible to define “in-
terestingness” in such a way that everyone is happy
in every context. These individual differences cannot
be bridged by new measures, but should be embraced
to find and combine measures to broaden our view on
pattern set mining. In this way, we will be able iden-
tify and tackle more problems in the future, maybe in
even broader fields then we can imagine.
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