The Effect of a Negotiator's Plan B

Optimal Negotiation Decision Functions with a Reservation Value Tamara Florijn, Tim Baarslag \& Dinar Yolum

Introduction to multi-agent negotiation

Goal: Reach a (good) agreement.

Challenge: Coordinate negotiations with multiple agents at the same time.

Idea: Treat other negotiations as backup plan. The corresponding utility value is called a reservation value.

Example: What shall we eat for dinner?

Proposal bid	Utility	Acceptance probability $\left(u_{i}\right)$	Expected utility $\left(E U_{\mathbf{r v}}\right)$
	$\left(u_{i}\right)$	0.16	

With \boldsymbol{k} bids, what would you do?

Goal: Find the sequence π that
maximizes the expected utility $E U_{\mathbf{r v}}$
$E U_{\mathbf{r v}}(\pi)=\sum_{i=1}^{k} u_{i} \cdot a_{i} \prod_{j=1}^{i-1}\left(1-a_{j}\right)+\mathbf{r v} \cdot \prod_{j=1}^{k}\left(1-a_{j}\right)$
? Challenge: Evaluating all sequences takes too long.

Optimal strategy:

- Take the best bid sequence of length k.
- Greedily select the best additional bid to find the sequence of length $k+1$.

With one bid, what would you do?

Without reservation value

Expected utility: 0.27
With reservation value

Expected utility: 0.32
$0.16+(1-0.2) * 0.2$

Future research

? What if there is more than one backup plan?
? What if the backup plan is probabilistic?
? What if each bid has a specific cost?
(?) What if...?

