

The Effect of a Negotiator's Plan B

Optimal Negotiation Decision Functions with a Reservation Value Tamara Florijn, Tim Baarslag & Pinar Yolum

Introduction to multi-agent negotiation

Goal: Reach a (good) agreement.

Challenge: Coordinate negotiations with multiple agents at the same time.

Idea: Treat other negotiations asbackup plan. The corresponding utilityvalue is called a reservation value.

Example: What shall we eat for dinner?

With one bid, what would you do?

With *k* bids, what would you do?

Future research

Goal: Find the sequence π that maximizes the expected utility EU_{rv}

What if there is more than one backup plan?

$EU_{\mathbf{rv}}(\pi) = \sum_{i=1}^{k} u_i \cdot a_i \prod_{j=1}^{i-1} (1 - a_j) + \mathbf{rv} \cdot \prod_{j=1}^{k} (1 - a_j)$

What if the backup plan is probabilistic?

- Q- Optimal strategy:

- Take the best bid sequence of length k.
- Greedily select the best additional bid to find the sequence of length *k+1*.

What if each bid has a specific cost?

CAIF Summer School '23